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ABSTRACT 

An unsteady boundary layer flow of an incompressible micropolar fluid near the forward stagnation point under 

electromagnetic field has been studied. The velocity of the flow is assumed to have started impulsively from rest and is 

maintained thereafter. Using non-similarity transformations, the governing boundary layer flow equations are reduced to 

boundary value problem (BVP). This system involves time and space variables. The missing initial conditions are obtained 

using Newton’s method to satisfy the end conditions of the boundary. The results are compared with available results to 

confirm the validity of the numerical code developed and the approach used. Velocity profiles, micro-rotation profiles and 

skin-friction coefficient for various values of parameters involved are presented. Smooth transition from unsteady to steady 

flow for large time solutions is observed. The effect of electromagnetic parameter on the flow field is also presented and is 

observed that with the increase of this parameter, flow reduces near the wall. 
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INTRODUCTION 

The quality of a product or efficiency of the production in extrusion process depends on fluid flow and mass 

transfer of the fluid involved. The fluid contains suspended particles, dust, metal particles etc..., such a fluid is called 

micropolar fluid. This is an important issue to be discussed in extrusion process. The theory takes into account the 

microscopic effects arising from the local structure and micro-motions of fluid particles of non-Newtonian flows.          

This provides basis for an efficient modeling and performance of products/instruments in the fields of exotic lubricants, 

polymers, liquid crystals and colloidal suspension solutions.  

There is a wide discrepancy between theoretically predicted and experimentally observed results. This may be 

because of unrealistic assumptions made in the modeling of the problem and approximations used in solving the resultant 

mathematical systems. Though the theory of micropolar fluids was introduced by Eringen[1], it has become popular 

research topic in recent times due to its wide range of applications in production activities. A comprehensive study of 

micropolar, fluids has been presented by Guram and Smith [2] and have obtained numerical solutions of stagnation Point 

flows of micropolar fluids under strong and weak interactions. The solutions were obtained using fourth order Runge-Kutta 

method. Gorla [3] has obtained numerical solutions for micropolar boundary layer flow at a stagnation point on a moving 

wall. Recently, Nazar and Amin et al. [4] have studied an unsteady boundary layer flow over a stretching sheet in 

micropolar fluid and obtained numerical solutions using Keller Box method. Many problems of practical interest are 

unsteady. In fact, there is no natural or practical applications, which do not involve unsteadiness. Steady and unsteady 

Newtonian flows are studied well by Katagiri[5], whereas unsteady flows of micropolar fluids are attempted by very few. 

The present paper studies the effect of electromagnetic fields on unsteady boundary layer flow of micropolar fluid 

near the forward stagnation point of a wall. The velocity of the flow is assumed to have started impulsively at the 
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stagnation point from rest and maintained steady state thereafter. The governing equations of the model are non-linear 

coupled partial differential equations(PDE). It is very difficult to solve the resultant nonlinear coupled system as it is, 

however, one can consider briefly the status of a “model” which can be judged as an adequate starting point for 

engineering calculations as referred by Blackmann et al in [6]. The importance of minimizing discrepancy between 

theoretically predicted and experimentally observed results and inclusion of electromagnetic field effects are explained by 

Naidu et al [7]. Imposing certain assumptions and using appropriate transformations the resultant system is reduced to 

standard form. This system is solved numerically for various values of material and electromagnetic field parameters.          

The profiles for velocity, micro-rotation and skin friction coefficient are plotted and presented in graphical form.  

Governing Equations: Consider a 2-Dimensional unsteady boundary layer flow of a micropolar fluid near stagnation 

point as shown in the figure.1. The flow is assumed to have started impulsively at time t=0 from rest along the wall            

x-direction and perpendicular to it y-direction. Using boundary layer theory and approximations, the basic equations 

governing the fluid flow are reduced to the following form as in Lok Yian et.al. [8].  

Physical Model 

 

Figure 1: Physical Model and Coordinate System 
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Where u and v are velocity components along x and y –directions, t: time variation. N: component of                 

micro-rotation vector normal to the xy-plane,  : density, µ, ν and k : absolute, kinematic viscosity and vortex viscosity 

respectively and µ =  ν are constants, n: a constant 0 ≤ n ≤ 1, and j: micro-inertia density. If n = 0 called strong 
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concentration as in Gurham and Smith[2]. For which N = 0 near the wall implies that the concentrated flows of 

microelements close to the wall surface unable to rotate as in Lok Yian et al [8]. For the case n = ½ indicates vanishing 

anti-symmetrical part of the stress tensor and it denotes weak concentration of microelements.  We shall 

consider for the case n = 0 and n = ½ in which it is assumed that the physical quantities  ,,, k .  

Introducing the following dimensionless variables  
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with the boundary conditions 
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Where electro-magnetic and material parameters are:
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Using the transformed variables (5), above equation reduces to 
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To solve the system of equations ( 6 ) and (7) together with (8), at ( = 0 ) ξ = 0, for the initial flow are  

Early Unsteady Flow: For 0 < n < 1, ξ = 0, the equations (6) and (7) get reduced to  
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together with boundary conditions  
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II. Steady State Flow: The equations for the steady state flow ( )1
,
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together with the same boundary conditions (13). 

Method of Solution: The system of equations (11), (12) and (13) is solved, being linear system, using the method of 

principle of superposition by obtaining solutions with three different sets of values for the missing initial conditions, 

namely f′′(0) and g′(0). Having thus obtained initial profiles, the system of equations (6), (7) and (8) is solved for                 

ξ = Δξ, 2Δξ, 3Δξ 4Δξ, ---------1.0 by a procedure to be discussed in what follows. 

The derivatives with respect to ξ are replaced by backward difference approximations. The system (6) and (7) is 

now solved with the initial values f(0) = 0, f′(0) = 0, f′′(0) = α, g(0) = - nα, g′(0) = β. To satisfy the end conditions namely, 

f′(∞, α, β) -1 = 0 and g(∞, α, β) = 0, we used the Newton’s method to find α and β. The derivatives with respect to α and β 

are obtained by solving the equations (6) and (7) after partial differentiation, with respect to α and β. Thus we solve the 

system 
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This pair of equations is solved once with the initial conditions F(0)=F'(0)=0, F''(0)=1, G(0)=-n, G' (0)=0 and 

another time with F(0)= F'(0) = F''(0) = 0, G(0) = 0 and G’(0) = 1. The Newton-Raphson method converged in 2 or 3 

iterations for each ξ. The accuracy of numerical method is tested with different choices for max ,  and  .            

We finally have chosen max =5,  =0.01 and  =0.1. 

Each initial value problem is solved using Adam-Bashforth, Adam-Moulton predictor corrector method of fourth 

order. It may be noted that f, f', f'', g and g', occurring in the equations (16) and (17) are known by solving the equations  

(6) and (7) for a given α and β. The convergence of solutions is checked on f''(0,ξ) with relative error <10
-4

. 

RESULTS AND DISCUSSIONS 

The profiles for velocity(f'), microrotation (g) and skin friction coefficient Cf have been drawn for several values 

of electromagnetic field parameter (M) and material parameter(K), for both early unsteady (o<ξ<1) and steady(ξ=1) cases. 

To validate our computational code and results, it is compared with the cases of Newtonian flow (K=0, 0wf ) of 
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available results for the steady state case (ξ=1) of Katagiri [5] and Lok Yian et. al.[8] without electromagnetic field 

parameter (M=0) as in table1. They are well agreed with others. The velocity, microrotation and skin friction profiles of 

unsteady and steady flow case for various parameter values (K and M) are presented in figures. 2,3, 4 & 5. Both f′and g 

profiles develop rapidly from rest as ξ increases towards steady state ξ=1. The profiles show a smooth transition from early 

unsteady flow to the steady flow. 

It is also observed that the steep shoot of flow between unsteady and steady cases near the wall. As the 

electromagnetic parameter (M) increases, the microrotation reduces drastically along the normal direction. In the absence 

of electromagnetic field parameter, the mcirorotaion is very nominal and not much of a change takes place.                     

The microrotation is more and gets reduced drastically near the wall compared to away from the wall as M reduces which 

can be seen in the figure 7. This nature is reversed in the case of increase of material parameter (K). The difference in the 

nature of microrotation profile for n=0 and n=0.5 is observed in figures 6 & 7 and microrotation reduces near the wall with 

the increase of electromagnetic field parameter (M). 

The nature of velocity profiles remain similar to that of material paramer K, during transient flow. On the other 

hand, the nature of velocity profiles gets changed 0 < 𝛏 < 1. It is also noticed that with the increase of material parameter, 

the skin friction (0, ξ ) decreases and has opposite effect as compared to its variation against electromagnetic parameter 

as can be seen in figure 9. Further the skin friction decreases as the flow approaches the steady state. The results help in 

controlling the flow to some extent to the desired cases. Increase of material parameter enhances the flow near the wall.
 

Table 1: Values of the Skin Friction Coefficient CfRex
1/2 

for Values of M=0, K=0, n=0 at ξ=1 

Katagiri[2] LokYian et al.[3] Present  

1.232588 1.232627 1.236651 

 

CONCLUSIONS 

It is found that an increase in the material parameter K will increase the velocity of the flow near the wall due to 

decrease of friction f''(0), where as the effect is reverse with the increase of electromagnetic parameter (M). 

 

Figure 2: The Variation of Velocity Profiles along Vertical Direction towards Steady State 
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Figure 3: The Variation of Velocity Profiles along Vertical Direction towards Steady State 

 

Figure 4: The Variation of Velocity Profiles along Vertical Direction towards 

Steady State for Various Values of Material Parameter 

 

Figure 5: The Variation of Velocity Profiles along Vertical Direction towards 

Steady State for Various Material Parameter (K) Values 
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Figure 6: The Micro-Rotation Distribution of Final Steady State Flow 

 

Figure 7: The Variation of Velocity Profiles along Vertical Drection towards Steady State 

 

Figure 8: The Variation of Skin Friction f
11 

(0) towards Steady State for 

Different Values Material Parameter 
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Figure 9: The Variation of Skin Friction towards Steady State for Different 

Values of Electro-Magnetic Field Parameter 
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